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THE MOMENT MAP AND LINE BUNDLES
OVER PRESYMPLECTIC TORIC MANIFOLDS

YAEL KARSHON & SUSAN TOLMAN

Abstract

We apply symplectic methods in studying smooth toric varieties with a
closed, invariant 2-form @ that may have degeneracies. Consider the
push-forward of Liouville measure by the moment map. We show that
it is a “twisted polytope” in t* which is determined by the winding
numbers of a map S"~! — t* around points in t*. The index of an
equivariant, holomorphic line-bundle with curvature  is a virtual T-
representation which can easily be read from this “twisted polytope”.

1. Introduction

A symplectic manifold is a smooth manifold M with a closed 2-form
“@ which is everywhere nondegenerate. Let T be a compact torus which

acts effectively, preserving w. A moment map for (M, T, w) is a map .
®: M — " such that (d®, &) = —i(£,,)w for every & € t, where &,
denotes the corresponding vector field on M . By the Atiyah-Guillemin-
Sternberg convexity theorem [1], [12], the image of the moment map is a
convex polytope A. For an excellent introduction to this subject, see [3].

If (M, T, w) admits a moment map, then the dimension of T cannot
exceed half of the dimension of M . If dim7T = % dim A , then the action
is completely integrable. Delzant [5] classifies these spaces; the polytope A
determines (M, T, w) up to equivariant symplectomorphism. Moreover,
he shows that (M, T) is equivariantly diffeomorphic to a toric manifold,
i.e., a smooth toric variety.

In particular, M admits a complex structure such that 7" acts holo-
morphically. Let L be an equivariant holomorphic line bundle over M
with curvature @, where @ is the imaginary part of a Kihler form on M .
Denote the sheaf of holomorphic sections of L by @, . Then H (M, &)
is a representation of 7°. Danilov [4] shows that the weights which occur
in H 0(M , @, ) are exactly the lattice points in A (with multiplicity one),
whereas H'(M, &,) =0 for i > 0.
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We extend these results to presymplectic forms. A presymplectic form
on (M, T) is a closed, invariant 2-form « which may be degenerate.
Although @ is still defined, Im® behaves badly. Instead, we consider
the push-forward of Liouville measure, ®, " , which was introduced by
Duistermaat and Heckman in [6]. It is a measure on t* which is sup-
ported on A. As was proved in [6], for symplectic @, d>*w" is equal to
Lebesgue measure times a piecewise polynomial function. In particular,
in the completely integrable case D, " is equal to Lebesgue measure on
A—up to a universal constant which we shall ignore for the remainder of
this introduction. Even for presymplectic w, one can prove that the den-
sity function is piecewise polynomial; ® " can be expressed as a sum
of polynomial measures on cones [2], [10], [11]. In this case, ®, " isa
signed measure on t* . :

In this paper, we give an explicit description of @, " . M/T is home-
omorphic to a ball. The moment map descends to the quotient, and,
restricting to 8(M/T) ~ 8", we get a map

*

(1.1) o: 8" .

For a € t*, let d(a) be the winding number of (1.1) around o . d has the
shape of a “twisted polytope”, as is illustrated in Figure 4 (p. 474). It is
bounded by hyperplanes; however, some faces may go right through other
faces, thus creating a region with a negative density; also, faces may “wrap”
several times around a region which then “counts with multiplicity”. The-
orem 1 in §5 states that ®,w" is equal to Lebesgue measure times . If
w is symplectic, then d(a) is simply one or zero, depending on whether
a lies or does not lie in Im®, in agreement with the standard theorem.

Let L be a holomorphic line bundle with curvature form w. Al-
though Danilov [4] has a recipe for determining H'(M , &,) , there is no
obvious relationship to the moment map. However, consider the index
S(-1YH (M, @, ) as a virtual representation of T'; Theorem 2 in §7
states that the weight o € t* occurs with a multiplicity d(«) wherever the
latter is defined. Again, this agrees with the standard theorem. Theorem
3 in §10 tells us the multiplicity of o when d(a) is not defined.

Here is a prototypical example; although it is not compact, it illustrates
these theorems. Let M = C and 7 = S' = {4 € C||A| = 1}. Identify
t* with R by sending (8/86)" to 1, where (r, 8) are polar coordinates.
The moment map ®: C — R is determined by d® = —i(8/80)w.

(i) Take the symplectic form, w = —rdr Ad@. Then dJ(reig) = —%r
and Im® is R* = {a € Rja < 0}. To compute the push-forward measure,

2
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write w = d (—%rz) AdO = daAdf. Integrating over the € coordinate,
we have ® w = (—2n)da on R .-

(i1) Take the presymplectic form w = (1 — rz)ra' r Ad@ , which is pos-
itive inside the unit disc and negative outside. Then (D(reie) = ?6(#) =
é(z - r2) . The map @: R* — R “folds” at #* =1 as shown in Figure 1.
The image of the moment map is (—oo, %] ,butin ® w the contributions
of the overlapping pieces cancel; again, ® w = (-2n)de on R™ .

Consider the space of holomorphic functions on C as a representation
of S' under the action (Af)(z) = f(,l_lz). In particular, for f(z) =
z" we have (Af)(z) = A "f(2z), so z" spans a one-dimensional weight
space corresponding to the weight —n. The multiplicity diagram of this
representation can be drawn as

-3 -2 -1 0

Notice its similarity to the measure @, w.

The paper is organized. as follows. In §2, we introduce toric manifolds
(M, T). In §3, we describe the quotient M /T . In §4, given a presymplec-
tic form w on M, we define a function d on . In §5, we prove that
the push-forward of Liouville measure by the moment map is given by the
function d (Theorem 1). In §6, we give an alternative description of 4,
as a “twisted polytope”, and show that it only depends on the cohomology -
class of w. In §7, we state Theorem 2, that the index of a line bundle
over M is given by the function 4. In §8, we establish the relationship
between the index over M and an index over a subset U C c¥. In 89,
we compute the index over Uy . In §10, we complete the proof of Theorem
2 and Theorem 3.
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2. Toric manifolds

A toric manifold is a smooth toric variety. Although this an algebraic
object, we shall only consider its complex analytic structure. For instance,
let M be any real 2n-dimensional manifold with (1) an n-dimensional
compact torus 7 which acts effectively, and (2) an invariant symplectic
form « which is Hamiltonian. By a theorem of Delzant [5], (M, T) is
equivariantly diffeomorphic to a toric manifold. In contrast, some toric
manifolds do not admit any invariant symplectic form.

Toric manifolds can explicitly be constructed as subquotients of cV.
Let us review this construction, following Michele Audin [3]:

Let t be an n-dimensional real vector space with a lattice £ . Consider
a set {x,, -+, xy} of primitive elements in ¢ which span t. Let R"
denote the nonnegative real numbers, and denote {1, --- , N} by N.

Definition 2.1. For I C N, the cone over {x;},.; is &, =3, R+x,.;
4, is a smooth cone if {x;};., can be extended to a Z-basis of £.

Definition 2.2. A (smooth) fan X over {x,,--- , xy} is a collection
of smooth cones of the form 4, such that:

(i) Any face of a cone in X is itself a cone in X, ie., &%, € X,
JCI= 4&,€X;

(ii) The intersection of two cones in X is a common face, i.e., &, , 4
EX = L NL, =Ly,

(iii) Ac{i} €X Vi.

Definition 2.3. The fan X is complete if |J &€z Ly =+t.

A toric manifold is constructed from a fan X as follows. Define a linear
projection 7: RY - ¢ by =n(e;) = x;; let ¢ = kern. Then we have dual
exact sequences:

0—t—-RY St 0,
(24) * z* Ny p *
0—-t >=R") >t —0.

Identify RY/z" with (S")" and C"/z" with (C*)" by the map
&xp: (L, , Ly~ (e ..., ¢*™%n); then = induces amap (S)Y —
t/¢ and, similarly, (C*)" — ¢./¢, where t. = t® C. Denote the kernel
by K and G respectively. Then,

(2.5) K= {&B()IL e R, n(¢) € };
| G={&pIec”, n()et}.

Now define
U ={zeC|z,#0vi ¢ I} =C" x ()",
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and
U = J{Ujl4, €2} .
Let T = (S)Y/K 24/ let T, = (C*)Y/G 2 t,/¢ . The toric manifold
associated to X is (M, T), where M = U;/G. One can prove (see [3])
that M is an n-dimensional complex manifold; 7T acts effectively and
analytically on M ; and M is compact if and only if X is a complete fan.
Additionally,
(i) H' (M) ={0}; |
(ii) Stab(p) C T is connected for every p € M.

Remark 2.6. One can construct a fan £ from any rational polytope
A c t*. This fan encodes the directions of the faces of A but not their
location in t*; it also specifies which faces intersect; see [3]. Faces of
A correspond to cones in £ of the complementary dimension. Although
some fans do not arise in this way, this intuition is useful. If (M, T) is
the toric manifold associated to £, w is an invariant Kdhler form, ® is
a moment map, and A = Im(®), then X is the fan which corresponds to
A.

Example 2.7. The following fan produces the manifold CP' ~ $§? with
T=S ! acting by rotations; in homogeneous coordinates, A - [zy, 2,1 =
[Az,, z,].

[ 3} Ot ——— 30O Q Q

Example 28. T = (§ 1)2 acts in a standard way on (C]P’Z; (A5 4,) -
[z,, z,, z,] = [A4,2,, 4,2,, z;]. In Figure 2, take the fan which contains
every two-dimensional cone generated by two consecutive vectors. This
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fan produces a manifold M which is the blowup of CP? at the three
fixed points; the action of T extends to M .

Example 2.9. An interesting class of toric manifolds is the Bott-Samel-
son manifolds; these arise in the study of Lie groups and their representa-
tions; see [8], [9].

3. The structure of M /T

Local structure. Let (M, T) be a toric manifold. The smooth struc-
ture of M/T is defined by declaring a function smooth if its pullback
to M is smooth. A diffeomorphism is, by definition, a homeomorphism
which mduces a bijection on the sets of smooth functions. For example,
any $' invariant smooth function on C is of the form f (lzl ) where f
is smooth on R. Therefore, z — |z| is a diffeomorphism (C/S — R,
where the smooth functions on R* are the restrictions of smooth functions
on R. '

Lemma 3.1. Topologically, M| T is a manifold with boundary M sing /T,

where Mg, is the set of points with nontrivial stabilizers. Differentiably, lzt

is a manifold with corners, i.e., it is locally diffeomorphic to R" x (R,

Proof. Choose any p € M and let H = Stab(p). The normal bundle
of theorbit & =T-p in M is Txy,V ,where V =T M/T & and H acts
on V by the isotropy action. By the ‘slice theorem” [3], a neighborhood
of # in M is equivariantly diffeomorphic to a neighborhood of the zero
sectionin T x, V', where T acts on the latter from the left. Therefore, a
neighborhood of [p] in M/T is diffeomorphic to V/H . Because H isa
torus which acts effectively on ¥, we can identify ¥ with R" ‘& C’ and
H with T’ ,-Where T' acts on C' in the standard way and fixes R
Then, V/H =R"" x (R . ’

Global structure. If (M, T) admits an invariant symplectic form with
a moment map ®: M — ¢, then ® descends to a homeomorphism
oM /T — A, where A=Im® is a convex polytope in ¢ . More gener-
ally, we have

Lemma 3.2. Let (M, T) be a compact toric manifold. Then M/T is
homeomorphic to a closed ball with boundary Msm /T.

Proof. Let X be a complete fan and let M = U/G be the correspond-
ing toric manifold. Consider the map ¢: éxp({+ip) — n(u) from (CH¥
onto t.- The preimage of every point is, by (2.5), an orbit of the group
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generated by (S I)N and G. Therefore, ¢ descends to a homeomorphism
(3.3) (M\ M)/ T = (€)Y /G)/T — t.

Now define a map from t into t as follows; on 4, € X,

(3.4) douxie Y (1—e ™ x,.

iel iel
This defines a homeomorphism of t with D: a bounded star-shaped
domain around 0, which is homeomorphic to an open ball. Let ¢ :
(M ~ Msing)/ T — D be the composition of (3.3) with (3.4). We will
extend ¢ to a homeomorphism of M/T with the closure of D. We first
need

Definition 3.5. Let T be a fan in t and fix 4&; € Z. Let t =
t/(span ;). Let £; be the image of x,; in t. Let L ={l € N|4, €
T}, and let L = L\ J. Define £ as follows: LX; € £ if and only if
JNI=© and % ,; €X. Thisis a fan over {%;}, 7, and it is called the
fan relative to 4 .

Remark 3.6. Think of the relative fan as what you see if you stand on
/4 ; and look around in t. Alternatively, if X is the fan associated to a
polytope A, then ¥ is the fan associated to the Jth face of A.

To complete the proof, take any w € Uy . Let J = { j|w]. = 0}; then

ing

4 ; € Z. Write w, = MGt for k ¢ J and consider Ykens #p%, in

{. It lies in some cone &, € T andis equalto >, u,%; forsome u; > 0.
If [w] is the image of w in M/T, then define p([w]) = Zjejxj +
el = e #)x;. One can check that ¢ is a homeomorphism, though
not in general a diffeomorphism.

4. Degree of the moment map

Let (M, T) be a toric manifold; let « be any closed, invariant 2-form
on M. As in the symplectic case, a moment map is a map ®: M — ¢
such that

(d®, n) = —i(n, ) foralnet,
where 7,, is the vector field on M corresponding to #. This condition
determines @ up to a translation in t*. For a toric manifold H' (M) =
{0} ; therefore, such a @ exists.
As in the symplectic case, ® is a T-invariant. Therefore it splits as

M-M/TS ¢,
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Definition 4.1. Take o € t', o ¢ ®O(M/T)). Denote {a} by .
Define d(a) be the degree of the map ¢: 8(M/T) -t \ «.

_ Explicitly, @ induces a map [®] from the reduced homology group
H, (0(M/T)) to H,_,(t"\ a). Both of these groups are isomorphic to
Z; d(a) is the image of 1 under the map [®]. '

Of course, d(a) depends on the orientations chosen; we use the follow-
ing conventions. As a complex manifold, A is oriented. Any orientation
for T induces an orientation on t, and hence on t". For later conve-
nience, let the orientation of M/T, followed by that of T, be equal to
that of M times (—1)"™"'/2_ An outward normal to M/T followed
by the orientation of 9(M/T) gives the orientation of M/T; a similar
relation picks a generator of }NIn_I (t"\ a@). Then d(a) does not depend
on the orientation of 7.

Additionally, @ induces a map from H (M/T,8(M/T)) to
H (t, ¢ \ «). These groups are also isomorphic to Z and, by a stan-
dard homological argument, d(c) is the image of 1 under this map.

Let o be a regular value of ®. A fortiori, « is not in the image of
8(M/T). Near ® '(a), M/T is an n-dimensional manifold, and ® is

smooth in the usual sense. Regularity implies that for any [p] € 6_l(a) ,
d®,,: T),(M/ T) — T (£') is an isomorphism. Therefore, there exists

some neighborhood U of « such that 5_1(U) is a disjoint union of
open sets which are mapped diffeomorphically to U by @ . Therefore, we
have

Lemma 4.2. If o €t is a regular value for ®, then

d(@)= Y sign(detd®|,).
P1ED (@)

5. Push-forward of Liouville measure

We define a signed measure on M , called Liouville measure, by assign-
ing the number fU " to the set U c M . Its push-forward D, " assigns
the number fg-1, " to the set A C ™.

Remark 5.1. We say that &” > 0 if and only if it is compatible with the
orientation of M . A typical situation is that " = 0 along a hypersurface
and has opposite signs on each side. Liouville measure takes negative
values in the region where " < 0.

Theorem 1. Let (M, T) be a toric manifold. Let w be an invariant,
closed 2-form; let ® be its moment map. Then
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n n *
(5.2) D w = (-2rn)n!-d(c)- (Lebesgue measure on t '),

where d(«) is the degree as in Definition 4.1.

Remark 5.3. Lebesgue measure on t* is normalized so that the quo-
tient of t* by £* has volume 1. The right-hand side of (5.2) is well defined
because the singular values of ® have measure zero.

Proof. By Lemma 4.2 it suffices to show that if p is a regular point of
@, then

(i) in a neighborhood of p, T acts freely and « is nondegenerate,
(ii) there exists an invariant neighborhood U of T -p such that
(5.4)
@, (w"|y) = (—27)"n! - sign(det d®| ) - (Lebesgue measure on B(U)).

Proofof(1). Let p € M bearegular point of ®. Because d<1>|p is onto,
for any nonzero 7 € t, i(n,)o|, ={d®P|,, n) #0,s0 n,,|, ¢ Null(w|)).
In particular, 7, , # 0,80 the orbit of p is n dimensional. Since Stab(p)
is connected, T acts freely at p. In addition, the tangent to the orbit
at p descends to an n-dimensional subspace of 7 M/Null(w|,). This
subspace is isotropic because the restriction of @ to an orbit is zero, just
as in the symplectic case. Since an isotropic subspace of a symplectic space
is at most half the dimension of the vector space, Null(w|,) =

Proof of (i1). By (i) and invariance, @ is symplecticin a nelghborhood
of the orbit of p. Because the signs of both sides of (5.4) depend in the
same way on the orientation of U, we can assume that this orientation
is compatible with the symplectic structure. The rest is standard; by the
Darboux-Weinstein “local normal form™ [14], U is equivariantly symplec-
tomorphic to a neighborhood of T x {0} in the cotangent bundle T x t*,
where T acts by left translation on the first factor, and « is the standard
symplectic form on the cotangent bundle. The moment map is projection
to the second factor. The Liouville measure «" is the product of the vol-
ume form on 7 with total measure (—2x)"n!, and Lebesgue measure on
. qed.

We now describe the function d for various examples.

Example 5.5 (Archimedes). Let T = S' acton M = §* by rotations
around the z-axis, as in Example 2.7, and take —w to be the standard
area form. Then the moment map is the height function on S?. For a
general @, d is supported on an interval whose length is 5| [ @, and
the value of d on this interval is sign(~- [, @) (see Figure 3, next page).

Example 5.6. Let M be the blow-up of CP* at three points, as in
Example 2.8. Figure 4 shows several possibilities for 4 for various @’s.
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7. The index

Let (M, T) be a toric manifold. Let L be a T-equivariant holomor-
phic line bundle over M and let &, be the sheaf of holomorphic sections.

Definition 7.1. The index of L is Y- (~1)’H'(M,#,). The func-
tion v:¢* — Z assigns to each weight « its multiplicity in the index,
considered as a virtual representation of T .

Let @ be any invariant connection l-form on L with curvature o.
The lifting of the T-action from M to L determines a moment map
®: M-+t for (M, T, w) by (®,n)= inLG forall nct.

Theorem 2. If aci™\ Im(S"_l) , then v(a) =d(a).

As stated, this theorem only applies to a ¢ Im(S”_l) . In fact, using a
small technical trick, we can determine v(a) for all a € £*; see Theorem
3 in §10.

Remark 7.2. Let L be a T-equivariant holomorphic line bundle over
M . Then the action can be uniquely extended to a holomorphic action
of T, generated by the vector fields £,, and (i), = J&,,, where ¢ € t,
and J: TM — TM is the complex structure. Therefore we may. restrict
our attention to 7 ,-equivariant holomorphic bundles.

8. Upstairs/downstairs

In this section we show that we can carry out computations in Uy in-
stead of in M. It is easier to work with the space U .

Remember that (C™)" acts naturally on Uy ¢ €V, G C (C*)¥ acts
freelyon Uy, M = Us/G, and T, = ((CX)N/G. Therefore, we can pull
back any holomorphic Ti-equivariant line bundle over M to a holomor-
phic ((CX)N-equivariant line bundle over U;. Conversely, if L is any
(CX)N—equivariant line bundle over Uy, then L/G is a T -equivariant
line bundle over M . These constructions give an 1somorph1sm between
the equivariant Picard groups of M and Uy .

Let ¢ be any weight of (C~ ) ,Le., c€ (Z Y*. Let p be the character
with weight ¢, ie., p(A) = A° = A]---A% for any A € (C*)". Then
we construct an equivariant line bundle L, over Uy: As a holomorphic
line bundle, L = U; x C; ((CX)N acts by A(z, x) = (Az, p(A)x) for any
Ae (@€Y

Remark 8.1. Fix i € N, and embed C* = C C (C*)" as the ith
factor. If z € Uy and z;, = 0, then 1 € (C;< acts on the fiber above



PRESYMPLECTIC TORIC MANIFOLDS 479

z as multiplication by A%. Moreover, let p be the image of z in M,
ie., p € M;. The image of C in T is &p(Cx;), and acts on the fiber
(L./G)|p with weight ¢, .

Lemma 8.2. Let L be an equivariant holomorphic line bundle over U .
Then L is isomorphic to L, for some weight c € VAN

Proof. Let ze Ug. If z, =0, then (Cf acts on the fiber above z by
A:x — A%x for some ¢; € Z. ¢; is independent of the choice of z;. In
this way we determine ¢ = (c;) € (ZN)" . It suffices to show that L ® Lc”1
is trivial, i.e., that is has a global, invariant, nonvanishing holomorphic
section. It is easy to find such a section over the subset ((CX)N; take any
Nonzero ((CX)N orbit. Moreover, this section extends continuously to a
section over all of U; with the desired properties.

Remark 8.3. Recall, from §6, that ® " is determined by a vector
¢ € (RY)*. As we shall see in Lemma 10.1, this is the same as the ¢ € (Z")*
associated to a line bundle L over M, when o is the curvature of L.

Let & be the sheaf of holomorphic functions on Uy (with ((CX)N act-
ing trivially on the fiber). For any representation R and weight o, denote
the corresponding weight space by R_. Recall that z*: ¢ — (RM)" sends
¢* into (ZV)*.

Lemma 84. For €, H'(M, &), = H Uy, @)1y .-

Proof. The sections of L = L /G are exactly the G-invariant sections
of L,. A section of L, is given by a holomorphic function f on Us.
(€)Y acts on sections by Af)(z) = p(Mf(A7'z). f is given by its
Laurent series, and it is G-invariant if and only if each monomial in the
series is invariant.

Consider f(z) = z ° where & € (Z¥)*. Then (Af)(z) = A" f(z2);
this monomial is an eigenvector with weight £ + ¢. Therefore f is G-
invariant if and only if A°*° = 1 for all A € G. Equivalently, by (2.5),
&) = ¥4 = | forall { e C" such that () € £. So f
is ¢ invariant if and only if Mike’s dog really ate his frog [8] if and only
if n({) et implies ({,é+c)€Z,ie., E+c=n"(a) for some a € £”.
The weight for the action of T on f as a section of L is «. In contrast,
¢ = n*(a) — ¢ is the weight of ((CX)N on f as a section on the trivial
bundle over Uy .

Lemma 8.5. For act*, H(M,&,) = H'(Us, @)

Proof. Define an open cover for Us.

" (a)—c "

%A ={U)|&, €}, where U,=C" x (C)"V.
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@,

FIGURE 6

The Cech cochains corresponding to this cover 'are' (:’i(fZL, g) =
GBHO(UIO N---NU,,d). Arguing as in Lemma 8.4, C'(%/G, &),
c'a, @)
SO

Il

2 (@) —c * These isomorphism commute with the boundary maps,

H@/G,0,),=H A, O)p .-
Moreover, UIo Nn---NnU, and (UIO N.---NU,)/G are products of C’s and

C*’s (see [3, §5.2]); thus 2 and 2A/G are good covers. Therefore, by
Leray’s theorem [7, §0.3],

H®G,0,)=H'M,&,) and H®Q,0)=H (U, ).

Definition 8.6. The function u: (ZN )* — Z associates to each weight
¢ its multiplicity in the index over Uy ; u(&) = (1) dim(H'(Uy, &),).
By Lemma 8.2, the qquivariant line bundle L over M gives rise to an
embedding j: t* — RY which sends o to n*(a) —c. Then, for a € £*,

(8.7) v(a) = u(j(a))

by Lemma 8.5. Therefore, it will be sufficient to compute the function x.

Example 8.8. Consider the action of § ' on CP! asin Examples 2.7
and 5.5. The map 7*: R — R® sends a to (a, —a). Let L be the
tangent bundle of CP'. The S' action naturally lifts to L. Let ¢ =
(1,1) € (Z%)", ie. let (C*)* acton Uy x C by (A, 4,)(zg, 2,, X) =
(AoZg> 412> A4 X) . Then L =L /G . Therefore, j(a)=(a—1, —a—1)
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embeds R in R* as the solid diagonal line in Figure 6 where the black
dot is the origin of R.

9. The index over Uy

In this section we compute the function x# defined in Definition 8.6.
Because each C'(2, &), is finite dimensional, u(¢) = Z(-1)'C'(%, &),;
this is easier to compute.

Example 9.1. In Example 8.8, Uy = c? \ {0}. Consider the covering
A= {U,,U,}, where U = CxC" and U, = C* x C. The essential
idea is very simple: z is a holomorphic function on C* and on C. In
contrast, z  is holomorphic on C* but is not holomorphic on C. The
monomial z, izl_j is holomorphic on U, if and only if / < 0 and it is
holomorphic on U, if and only if j < 0. Every monomial is holomorphic
on U, NU,. Therefore, dimC'(%,#), ;=1 forall i, j and

2 ifi<0andj<O0,
dim (21, @); ;=4 1 ifi>0and j<O0, or vice versa,
0 ifi>0andj>0.

Taking the alternating sum:

1 ifi<0and j<0,
u(i, jy=< —1 ifi>0and j>0,
0 otherwise.

This is illustrated in Figure 6, where circles represent multiplicity 1, and
squares represent multiplicity —1. Notice that the index of the tangent
bundle is three-dimensional. As an additional example, the dotted line
represents the tautological bundle over cP! , for which H* =0 forall i.
In the general case, let H, be the half-space {{ € (ZN )*I¢; < 0}. Let
H, = ﬂie 1 H;. The monomial z ¢ is holomorphic on U, exactly if ¢ is
in H,. Any holomorphic function on U, is given by its Laurent series:

Z lcz_é.

¢eH,

Therefore, the multiplicity of £ in the representation I'(U;, &) is 1 if

¢ e H,,and is 0 otherwise. Since U N--NUp =Up oy > We have
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Lemma 9.2. Hi( » O)e, and hence u(<), depends only on whether
§; <0 o0r ¢ >0 for zeN

We now determme how u(&) changes as & passes through the coordi-
nate hyperplanes. Let &,¢& € (ZN)*. Without loss of generality, é; =¢;
for all i # 1, but é; < 0 whereas &, > 0. Let 3. be the fan relative to

X, » as in Definition 3.5; let U, = C" x (C* YV and let @ = {4, €Z}.

Deﬁneée(Z) byfl—é, forall / € L, and j: (Z) — Z- by
i) = (-1 (2( @)e. This is the multiplicity of ¢ in the index of

Us.

Lemma 93. u(&)—u®=aQ.

Proof. Let I C N, such that &, ¢ . If 1 ¢ I, then z™* is holo-
~ is not

morphic on U, exactly if z‘c’ is holomorphic. If 1 € I, then z
=&

holomorphic on U, . In contrast, let /= I\ {1}, then, since fC L, z

~

will be holomorphic on U, if and only if 2% is holomorphic on U;. So
dim(I'(U, , ﬁ)c,) — dim(I'(U, , ﬁ)c) = dim(l“((?i, ﬁ)é) . Therefore,

N N
> (- 1)’ dim(C* (A, D))=y (- 1) dim(C (3, 2)e)
i=1 i=0

(=1 dim(C' @, #),).

|Mz

10. Proof of Theorem 2

We can now prove Theorem 2 by induction; assume that v = d for
(n — 1)-dimensional toric manifolds. '

Let us review some notation. (M, T) is the toric manifold associated
to the fan X. L = L, /G is an equivariant holomorphic line bundle over
M (§8). Construct @, 6, and @ as in §7. For any i € N, M, is the
corresponding toric submanifold of dimension n —1, as in §6. F, C i
the hyperplane perpendicular to x; which contains ®(A).

We know how d and v change as we cross the walls F; and j_l(Ei)
respectively. To show that v = d, we first need:

Lemma 10.1. Let E;, be the ith coordinate plane in (RN)*; then
JTUE)=F,

Proof. Choose any p € M, and let o = ®(p). Let ¢ be the vector
field on M which generates the action of the circle (S 1) ,=expRx;)CT.
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By Remark 8.1, (S l)i acts on the fiber over p with weight ¢;, so i §0|p =
c;. But this is exactly (®(p), x,), by the construction of ®. Therefore,
(@) —c, €)= {(P@),x;)—¢c;=0,ie., jl@)€E,. qed

If x, = —X;, then it is possible that F, = FJ For simplicity, we will
assume that this does not happen. By Remark 6.5, the following three
lemmas imply that v =d.

Lemma 10.2. HI(M , @), and v(a) only depend on whether (o, x;)
<c¢; or >c; forall ieN.

Proof. This follows immediately from Lemmas 10.1 and 9.2, and (8.7).

Lemma 10.3. Assume that for o, a, € 2" theinterval a,, 0, intersects
the wall F, transversely at y, and does not intersect any other F,. Then

v(a,) —v(a,) = sign{a, — a,, x;)d, (7).

Proof. Define ¢ € (Z*)" by ¢ =c¢, VYleL. Then Ll = L,/G,in
the notation of Lemma 6.1. By the induction hypothesis, for any a € £*,
d(a) = v(a). By (8.7), #(a) = (A" (@) —¢). Let o € £7 be the image
of & under the natural map from " to t*. Let ¢ = n%(a) — ¢, and
f =#"(@) — ¢. Then f, =¢, forall I € L. The lemma now follows from
Lemma 9.3 and (8.7).

Lemma 10.4. There exists a € £* such that v(a) =d(a).

Proof. Choose any B € £* such that (8, x;) # 0 for all i. Choose
m € Z such that m|(#, x;)| > |¢;| forall ;. By the previouslemma, n € Z
and n > m imply that Hi(M, ﬁL)mﬂ = Hi(M, ﬁL)nﬂ. Because M is
compact, H i(M , @) is finite dimensional; therefore, H i(M v O ) g = 0.
On the other hand, d(mf) = 0 for large m because d is compactly
supported. Thus, v(mf)=0=d(mp).

We are now almost finished. However, we still wish to determine v(a)
for a € F;; we do this by shifting the walls FJ slightly in the “positive”
direction. Formally, define ¢’ in (ZN )" by c; = ¢ +% for all i € N.
Remember that a degree function is determined by any N-tuple in (RN Y,
as in Definition 6.6. Let d’ be the degree function associated to ¢’. Then
d'(a) is defined for all o € ¢*, and d'(a) = d(a) wherever the latter is
defined.

Theorem 3. v(a) =d (o) forall a€”.

Proof Llet & = n"(a)—c. Define ¢ in (ZV)* by &=c¢ if & #0,
& =c;+1if {;=0. Let d be the degree function associated to ¢. Let
& =n*(a)—¢. Ttis clear from Lemma 9.2 that u(&) = u(€). Then, v(a) =
u(&) = u(€) = #(a) where i = u(z*(a)—&). By Theorem 2, d(a) = #(a).
Finally, it follows directly from Remark 6.3 that d(a) =d'(e). q.e.d.
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